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ABSTRACT 

World-wide fmin records are  used to analyze onset patterns of PCA due to 

enhanced ionization caused by penetrating solar particles. The initial phase of 

PCA consists of at least three characteristic stages that occur successively in 

different zones of the polar region: the first stage is observed as a slightly en- 

hanced ionization near the geomagnetic pole; the second stage as a remarkable 

development of PCA in the polar cap above 65" (corrected geomagnetic latitude); 

and the third stage as  an extension of the enhanced ionization down to latitudes 

of 60" or lower. A diffusion model of interplanetary space suggests that the 

three stages are  due to differential arrival of solar electrons, protons and a -  

particles at the polar atmosphere. The importance of a-particles to the third 

stage is established by using known incident spectra of both solar protons and 

a-particles. An empirical relation between particle rigidity and geomagnetic 

latitude shows a uniform reduction of the Stgrmer rigidity cutoff by some 70% in 

the interval 55" - 65" in corrected geomagnetic latitude, and a disappearance of 
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cutoff in the polar cap above 65". The former suggests a quiet-time ring cur- 

rent, while the latter may be explained either by a direct merging of the polar 

cap magnetic field with the interplanetary field or by a particle-energy coupling 

due to a diffusion process such as in a postulated long geomagnetic tail. Onset 

patterns of PCA are  used as a test for these theoretical models of the geomag- 

netosphere. Transient times of a few hours usually required for the first and 

second stages seem to favor the particle-diffusion model. 
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ENTRY OF SOLAR COSMIC RAYS 

INTO THE POLAR C A P  ATMOSPHERE 

1. INTRODUCTION 

In recent years it has been well established that the phenomenon of polar 

cap absorption (PCA) is due to enhanced ionization in the upper atmosphere by 

incoming sub-cosmic ray particles associated with major solar flares. The 

general nature of PCA events has been studied extensively by means of world- 

wide ionograms, riometers and VHF scatter techniques (Obayashi, 1964; Bailey, 

1964, and papers cited therein). Nevertheless, little is known about the onset 

phases of PCA, because of the inhomogeneity of its spatial distribution and the 

small magnitude of the absorption effect. This problem is particularly impor- 

tant since the developing patterns in the initial phases of PCA must surely pro- 

vide information about solar cosmic ray particles - especially on the effects of 

interplanetary modulation, on the particle composition, and on the entry of the 

particles into the geomagnetic field. 

A morphological study of PCA-ionospheric events with the aid of corrected 

geomagnetic coordinates (Hakura, 1964, 1965a, b) noted the differentiation of the 

initial phase of PCA into a t  least three characteristic stages which occur suc- 

cessively at different polar zones, the result suggesting differential precipitation 

of various solar particles. The present paper considers the mechanisms that 

differentiate the solar cosmic ray composition (protons, a-particles, and 
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electrons) entering the polar cap atmosphere. The results are used to revise 

the Stbrmer theory for charged particles penetrating into the distorted geo- 

magnetic field, 

2. INITIAL PHASE OF PCA EVENTS 

A morphological study of the initial phases of PCA events has been made 

(Hakura, 1965) using the fmin data of 50 northern polar ionospheric stations. 

A typical solar-geophysical event, that of August 16,1958, is plotted in Figure 1. 

On that date an intense flare of magnitude 3+, associated with a major type IV 

radio outburst, occurred at 0 4  32m. Simultaneously with the onset of the flare, 

a Sudden Ionospheric Disturbance (SID) was noted in an fmin observation at 

Alert, Canada; this is attributed to an excessive solar x-ray burst emitted from 

an excited coronal condensation at the time of the flare. A few hours after the 

SID, an increase in fmin value started again, indicating the onset of a PCA event. 

Concurrently, an incidence of solar cosmic-ray protons of energies 10 - 100 

MeV was detected by direct measurements of energetic particles by Explorer IV  

in its orbit. 

Figure 2 shows the time sequence of the PCA effect (enhanced ionization 

and blackout) arranged in order of corrected geomagnetic coordinates. Except 

for the immediate SID effect, the PCA started first at high latitudes and then 

spread out to latitude 60" within several hours after the onset. It is notable here 

that the development of PCA at the initial phase is not gradual but consists of at 
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least three characteristic stages before reaching full development. As  viewed 

from above the North Pole (Figure 3), the first stage consists of a slight in- 

crease of absorption near the geomagnetic pole above corrected geomagnetic 

latitude 80"; in the second stage, the PCA is developed within the latitude of 

about 65"; while in the third stage it extends down to about 60". 

The PCA patterns in the second and third stages are of more or  less cir- 

cular form, provided that geomagnetic coordinates corrected by higher order 

spherical harmonic terms are employed. A well-known oval shape of the PCA 

pattern in the centered dipolar coordinates is transformed into a circle in the 

corrected system, giving unified boundary latitudes, g2 and s3, to  these stages 

It has been shown that these developing processes of the PCA during its initial 

phase are common for most events, except that the lowest latitude $3 in the 

third stage varies from event to event. A s  a histogram of 23 for 22 events in 

Figure 4 shows, it varies within the interval 54" - 65". 

3. COMPOSITIONS OF SOLAR COSMIC RAYS AND THEIR PCA EFFECTS 

The solar cosmic rays are  composed of protons, a-particles, and a few 

heavier nuclei, as well as electrons (cf. Table 1). Since most of the supra- 

thermal particles would be produced simultaneously in the flash phase of a 

solar flare, and since all of these components must be in the same rigidity 

range when they escape from the solar magnetic field, they should prq'agate 

through interplanetary space with different mean velocities, and induce the PCA 
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effects at different storm times and in different regions. Such differential pre- 

cipitation might explain the complex PCA patterns. 

It is generally believed that the propagation of sub-cosmic rays through the 

interplanetary medium is a process of diffusion, as well as one of control by a 

large-scale twisted interplanetary magnetic field. The time-delay of solar cos- 

mic rays of velocity V in reaching maximum intensity at the earth is given by 

where R = 1 A.U. and the scattering mean free path h - 0.05 A.U. (Hofmann 

and Winckler, 1963). The energy of solar protons measured by satellites is of 

the order of 100 MeV, which yields the time-delay rP - 4 hours. The velocity 

of a-particles with similar rigidity to protons is Va - %Vp, and hence r, - 8 

hours. For electrons, since they are  certainly of relativistic energies, re - 
1.3 hours. These delay-times suggest that the first, second and third stages of 

PCA correspond to  the arrival of electrons, protons and a-particles, respectively. 

In a simple model in which particles migrate through an infinitely extensive 

diffusion medium, the flux of solar cosmic ray particles at the earth is given by 
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where j , ( P) is the flux at the sun at t = 0. Let the numerical ratio of a-par- 

ticles to protons at the source be K ,  and at the earth be K, ( t ) ;  then 

Since T ~ / ~ ~  'U 2, then 

It is evident that for t 

the contribution of a-particles to the PCA in its third stage must be very im- 

portant unless K s  is very small. In the earlier stages ( t  < 0.72 T ~ )  the solar 

protons must be the predominant agent responsible for PCA, except for a pos- 

sible electron PCA effect in the first stage. 

0.72 7,, K, (t)  exceeds the ratio K ,  at the source, and 

On the other hand, the amount of radio absorption due to the ionization effect 

is very sensitive to the penetration depth of the incoming particles. Corre- 

sponding to a penetrating particle's flux, there is a certain height limit below 

which enhanced ionization causes little PCA effect. Since the stopping height vs. 

rigidity relation for protons and -particles is 
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a-particles tend to produce the lowest latitude of PCA if the particle fluxes for 

both compositions are comparable. Thus it seems clear that a-particles play 

an important role in determining the lowest latitude '3 in the third stage of 

PCA. 

Importance of a-particles to the Third Stage of PCA 

From known actual incident spectra of both protons and a-particles, the 

threshold rigidities of detectable absorption, P,; and P, , may be computed 

for a given model atmosphere. The higher of the two, 

pt h 

is related to the lowest PCA latitude 9 at the time of the balloon observation. 

Figure 5 shows the relation between P,; and P,,", obtained for the 20 Minne- 

apolis observations of solar cosmic radiations (Freier and Webber, 1963), 

where the marks , 0, and 0 indicate that the a-particle to proton ratios U / P  

are  of the order of 1,  10- , and 10-2 respectively. It is noted here that three- 

fourths of the observations did detect the a-particle to proton ratio a/p * 1, 

and the black marks always lie in the region P, h" > P, E. Since the over-all 

threshold rigidity P t h  is always given by P,; in these cases, it may safely be 

said that the equatorside boundary of the PCA in its third stage is produced by 

the a-particles in most of the solar cosmic ray wents. The term "solar 

1 
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proton events" so far used in connection with PCA needs some correction be- 

cause of these results. 

It is also noted that a few points marked by 0 are located in the opposite 

region: Pt; < P, l .  Since the majority of ionizing radiations consist of solar 

protons in these exceptional events, we shall call them "pure solar proton 

events". The May 4, 1960 event is one such PCA event (the abundance ratio 

being K, < 0.02). As Figure 6 shows, the result is very remarkable in that 

the cutoff latitude is 65" and the third stage is completely absent. 

Possibility of Electron PCA 

The first stage suggests a possibility of solar electrons of energies 

0.1 - 40 Mev arriving at the earth with intensities above l o 3  cm-2 sec''. 

Though no mechanism is known that allows particles of such low rigidity to 

escape from the sun, a recent spacecraft observation seems to favor this 

speculation. Van Allen and Krimigis (1965) detected 3 cases of 40 kev solar 

electron bursts observed by the Mariner 4 spacecraft during May-June, 1965. 

The maximum intensities in these cases were lower than the threshold value 

of detectable absorption, and no PCA effect was observed in fmin records over 

the northern polar region. However, they are connected with solar flares of 

very small scale during minimum solar activity. More intense electron bursts 

must be confirmed through further cooperative study of satellite and balloon 

observations and synoptic analysis of related PCA events in the coming period 

of solar maximum. 
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4. LATITUDE DEPENDENCE OF NON-STORMER CUTOFFS FOR CHARGED 

PARTICLES PENETRATING INTO A QUIET GEOMAGNETIC FIELD 

It is well known that the observed cosmic ray cutoff magnetic rigidities in 

the polar region are significantly lower than those predicted (viz. P, = 14.8 

cos4 @) by the Stijrmer theory for the dipole earth, even in magnetically quiet 

periods (Akasofu, Lin, and Van Allen, 1963). In the present section, the latitude 

dependence of the non-Stbrmer cutoffs during geomagnetically calm conditions 

will be discussed. 

As already mentioned, the cutoff latitude, 3 of PCA is related to the thresh- 

old rigidity of solar cosmic rays Pth.  They give an empirical relation for the 

non-Stijrmer cutoffs. The values for 11 observations made during magnetically 

quiet periods are plotted by the mark in Figure 7, where the computed rigid- 

ity vs. geomagnetic dipole latitude curve is also indicated. The dotted line 

shows the Schwarz correction for the penumbral effect due to the impenetrable 

earth. 

Data on the geomagnetic cutoff in the lower latitude zone are obtained from 

cutoff rigidities of the galactic cosmic rays (McDonald, 1959; Kellogg and 

Winckler, 1962). They are  designated by the marks + in Figure 7. 

Satellite observations of the low energy solar cosmic rays are available for 

the polar cap region above 65". Explorer VII observations revealed a "knee" 
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of the solar cosmic ray intensity versus L-value curve, which is designated as  

Lmin. The mean curve of Lmin vs. the ring-current parameter U was obtained 

by Lin and Van Allen (as cited in Akasofu, Lin, and Van Allen, 1963): 

Lmin = 5.81  - 0.0134 U.  

When U = 0 ,  the labeling parameter of the knee becomes 

showing that protons with energies as low as 15 Mev can reach 65.4" in cor- 

rected geomagnetic latitude, even in magnetically calm periods. More precise 

knowledge of the cutoff latitudes for 1.5 Mev protons a re  given by Stone (1964), 

who observed cutoffs of 65" on the night side and 67" on the day side. They are  

shown by the mark 0 in Figure 7. 

It is evident that the observed rigidity of incident particles is always lower 

than that expected from the Stifrmer theory. The general tendencies of the non- 

Stifrmer cutoffs may be summarized as follows: 

A. Despite considerable scatter, observations in the geomagnetic latitude 

range 55" - 65", seem to show a uniform reduction of cutoffs by an average 

factor of 0.7. Below 55", the observed rigidities become less reduced and 

approach those for the dipole earth. 
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B. There is a sort of 

polar caps above 65" geomagnetic latitude. 

energy pitff for the particles incident upon the upper 

Until recently, many workers have proposed different kinds of explanations 

for the anomalous entry of solar cosmic radiations (cf. Akasofu et al., 1963; 

Michel, 1965). However, none gives m y  complete solution, because the two 

items mentioned above were not well discriminated. In what follows, some 

surviving theories will be reviewed. 

A Quiet-Time Ring Current 

The influence of a possible terrestrial ring current on geomagnetic cutoffs 

has been studied by several workers including Kellogg and Winckler (1961). On 

the assumption of an azimathal current on the surface of a sphere of radius R 

encircling the earth, they obtained a simplified concept of the reduced cutoffs: 

The curve of critical rigidity vs. latitude has two parts, depending on whether 

the StiSrmer pass closes inside or outside tbe ring current. For the outside 

branch corresponding to higher latitudes on the earth, the cutoff rigidity is 

reduced from the Stijnner value P, to 

where M, is the magnetic moment of the ring and ME is that of the earth. The 

branch of the curve which applies to more equatorial latitudes depends on the 

. 
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parameter M,/R3, and rapidly approaches the Stijrmer cutoff as  one proceeds 

southward from the intersection of the two branches. Using this calculation, 

Kellogg and Winckler discussed the possibility of a quiet-time ring current. 

The present results, summarized in Figure 7, will add more information to their 

conclusion. In the latitude range 55" - 65", an average reduction factor was 

and the factor becomes larger, approaching unity in the zone below 55". These 

results suggest the existence of a quiet-time ring current with magnetic moment 

0.4 ME, situated at a distance of several earth radii. 

The ring current is due to charged particles trapped in the earth's mag- 

netic field in the same way that the particles in the Van Allen Belts are  trapped. 

Recently, several satellites observed the quiet-time ring current at a distance 

of several earth radii. The most recent one is the observation by the Explorer 

XII satellite, which revealed the existence of a low-energy proton belt (Davis 

and Williamson, 1963). Akasofu et al. (1962) identified this as a quiet-time ring 

having the magnetic moment of some 0.2 M,. The ring current may be a pre- 

vailing factor in reducing the cutoffs in the latitude range 50" - 65", though we 

must also consider such an effect of limited radial extent in the geomagnetos- 

phere as discussed by Akasofu et al. (1963) in order t o  get a better f i t  to the 

experimental results. 



15 

Merging Between the Geomagnetic and the Interplanetary Magnetic Field 

To explain the anomalous entry of the low energy particles into the polar 

caps above latitude 65", we must consider a sort  of merging of the geomagnetic 

field with the surrounding interplanetary field. Several years ago, Obayashi 

(1959) predicted the reduction of the cutoffs on the assumption of a dissipation 

of the geomagnetic field outside the geocentric cavity by the plasma stream 

from the sun. In his model, geomagnetic field lines originating in the polar cap, 

even during magnetically quiet periods, merge with the interplanetary field on 

the cavity surface which is situated at about 10 earth radii, so that the solar 

cosmic radiations arriving uniformly on the cavity surface can penetrate into 

the polar caps regardless of their energies, resulting in the observed anoma- 

lous entry. 

Recently, the IMP-1 satellite revealed the gross configuration of the geo- 

magnetosphere: the earth's magnetic field is deformed by the solar wind into 

a comet-like shape with the tail pointing away from the sun (Ness et al., 1966). 

Theoretical models of an asymmetrically deformed magnetosphere have been 

proposed by several workers including Dungey (1963), Levy et al. (1964), and 

Dessler (1964). In the Dungey-Levy model shown in Figure 8(a), field lines in 

the polar caps are directly connected to  the interplanetary magnetic field on 

the surface of the geocavity. This is topologically analogous to Obayashi's 

spherical cavity model. It is easily shown that solar cosmic radiations 
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penetrating into these model magnetospheres will uniformly bathe the polar caps 

within a few minutes. 

On the other hand, Dessler proposed a long tail magnetosphere in which 

the rate of magnetic merging is negligibly small [Figure 8 (b)] . Michel (1965) 

argued that, if the magnetosphere tail is longer than 1 A.U. and has a turbulent 

component, then diffusion allows soft cosmic radiations to enter the tail and 

appear over the whole polar caps after some transient stage of a few hours 

duration in which we would observe an anisotropic penetration of solar cosmic 

radiations into the polar caps. 

Thus the penetration process of solar cosmic radiations seems to be an 

important clue for testing the validity of these theoretical models. In the follow- 

ing section, the progressive patterns of the PCA event in its initial phase will 

be examined in greater detail, since they illustrate this transient penetration 

process. 

5. PENETRATION OF SOLAR PARTICLES INTO THE GEOMAGNETS 

SPHERE, OBSERVED IN THE DEVELOPING PATTERNS OF PCA 

In order to reexamine the patterns of PCA from such a point of view, we 

shall review a PCA event which occurred on July 7, 1958. This event gives one 

of the most reliable progressive patterns of PCA, since it is a simple F-type 

event observed in summer when almost all of the northern polar cap is sunlit, 

and since it started in  an extremely quiet geomagnetic condition. 
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In this event a systematic appearance of PCA was first observed at 02:OO 

U.T., some 1.5 hours after the flare, in a high-latitude area near the northern 

pole. A s  seen on the top viewed patterns in Figure 9(a), expressed by contours 

of Afmin, the first stage of the PCA was restricted to a small region above 80" 

on the sunward side. 

In a short time, the ionized region began to propagate towards lower lati- 

tude (b), and at 04:OO U.T. (c) a sudden and outstanding intensification of the en- 

hanced ionization was observed along the auroral zone on the solar side. This 

is an onset of the second stage of the PCA initial phase. The region of polar 

blackouts (designated by the letter B) gradually widened itself toward the night 

side, and it took about 4 hours before the whole polar cap above 65" was in a 

complete blackout condition. The development of polar blackouts in the second 

stage is illustrated in Figures 9 (c) - (f). 

In several more hours, the PCA propagated further into the lower auroral 

zone, and at 14:OO U.T. the whole region above 60" was completely covered by a 

severe enhanced ionization [ cf. Figure 9 (g) and (h)] . This is the third stage of 

the PCA initial phase. 

Characteristic times and latitudes for these three stages are  summarized 

in Table 2. 
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'pi 

(Latitude of PCA) 
A t (Time After Flare) 

Table 2 

Ionizing 
Radiations 

Three Characteristic Stages of a PCA Initial Phase, July 7 ,  1958 

1st Stage 

2nd Stage 

3rd Stage 

I I I 

I 

Electrons 

or  Protons 
+ 1.5 - > 80" 

+ 3.5h + + 7.5 h - > 65" Protons 

1 60" u -particles 

54" - 65" and Protons 
+ 9.5h + sc Changeable 

A s  to the components of solar cosmic radiation responsible for the PCA, 

we have already the following conclusions : 

1. Among solar cosmic ray components, protons'and a-particles are  the 

main ionizing radiations. However, there is also a possibility of elec- 

tron-PCA, if the sun actually emits sufficient electrons of energy 

0.1 - 40 MeV. 

2. If interplanetary space is a diffusion field for propagating solar cosmic 

rays, a characteristic time divides the PCA initial phase into two 

parts. Before the characteristic time, i.e. in the first and second 

stages, solar protons a re  the main ionizing radiations. On the other 

hand, the contribution of a-particles to the PCA becomes very impor- 

tant in the third stage. 
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Since we are concerned with the anomalous entry of solar particles into the 

polar cap, the third stage is excluded from the present discussion. We may 

derive the following explanations for the first and second stages: 

A. If the sun emits electrons of energy 0.1 - 40 Mev at the flash phase of an 

associated flare, the first stage may be explained by both the models in 

Figure 8 (a) and (b). In the model (a), the vanguard electrons will enter the 

polar cap ionosphere through the near-pole geomagnetic field lines that 

merge directly with the interplanetary field. In the null-merging model (b) 

the electrons, scattered by the turbulent magnetic field in the transition 

region, will reach the neutral lines situated on the cavity surface (Mead 

and Beard, 1964), and enter the near-pole ionosphere, causing the first 

appearance of enhanced ionization. It must be noted here that we are  dis- 

cussing motion of electrons in a time interval less thanrdi f, a diffusion 

time of electrons in the geomagnetosphere tail. After rdi 

will appear isotropically over the whole polar cap, if the argument of 

Michel-Dessler (1965) is valid. 

, electrons 

The secondary onset of enhanced ionization at 04:OO [Figure 9 (c)] shows 

the first impact of ionizing protons upon the polar cap ionosphere. The 

development PCA patterns (c) - (f) shows a series of solar proton penetra- 

tion processes into the polar cap. The transient time of 4 hours seems to 

suggest the existence of some diffusion process in the magnetosphere. The 
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progressive pattern, Le., that the blackout started from the auroral zone 

and propagated towards the pole, coincides with that predicted in the Michel- 

Dessler 's longtail diffusion model, except its remarkable local time depend- 

ence. 

B. In order to explain the first stage of PCA by solar protons, we must postu- 

late proton energies of several tens of MeV for a reasonable arrival time. 

Since such high energy protons obey a quasi-St6rmer rule even in the cavity- 

confined geomagnetic field, the first impact zone must have been somewhere 

along the auroral zone (Obayashi, 1959). To explain the first impact zone 

above 80°, the near-pole geomagnetic field must directly be connected with 

the interplanetary field as in the Dungey-Levy model (a). However, here 

again a transient time of 6 hours from the first to the end of the second 

stage is unfavorable to the open polar cap model. 

The amount of PCA is a complex function of the incoming particle f lux ,  the 

energy spectrum, the composition, and the ionosphere condition, so that it is 

quite difficult to derive a unique solution of .the geomagnetosphere model from 

the onset patterns of PCA. However, the stepwise development of PCA and 

transient times of a few hours a re  at least significant, and they suggest electron- 

PCA as  well as some kind of particle diffusion process in the geomagnetosphere 

for their explanation. 
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6 .  CONCLUSIONS 

1. The initial phase of PCA consists of at least three characteristic stages 

which occur successively in different zones of the polar region: the first 

stage is observed as  a slightly enhanced ionization near the geomagnetic 

pole; the second stage starts as a sudden and outstanding intensification of 

enhanced ionization along the auroral zone; and in the third stage the en- 

hanced ionization propagates gradually in the lower auroral zone to achieve 

a complete development of polar cap blackouts. 

2. In the composition of solar cosmic rays, protons and a-particles are  the 

main ionizing radiations. However, there is also a possibility of electron 

PCA, if the sun emits a burst of 0.1 - 40 Mev electrons. A diffusion model 

of interplanetary space for propagating solar cosmic rays suggests that the 

existence of the first, second, and third stages is due to differential arrival 

of solar electrons, protons, and a-particles , respectively. 

3. The comparison of the threshold rigidities of protons and a-particles 

capable of producing the radio absorption shows that the a-particles do 

form the lowest latitude of the absorption observed during the third stage 

of ordinary PCA events, where the numerical a -particle to  proton ratios 

J a/ J p are nearly unity. 

There are a few exceptional "pure solar proton events", such as that on 

May 4, 1960 when the ratio J a/Jp was of the order of 

this event, the associated PCA was restricted in the polar cap (ac 2 

and enhanced ionizations were produced absolutely by solar protons. 

ThroMhout 

659, 
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4. The above result in turn gives an experimental relation between particle 

rigidity and geomagnetic latitude. With additional information from balloon 

and satellite observations, it clarifies the latitude dependence of non- 

Stiirmer cutoffs for charged particles penetrating into a quiet geomagnetic 

field: 

A. The observed rigidity of charged particles arriving at a given latitude 

of the earth is some 70% of that expected from the Starmer theory, in 

the interval 55" - 65" of corrected geomagnetic latitude. Below 55", 

the rigidities become less reduced and approach those of the dipole 

earth. 

The cutoffs disappear in the polar cap above 65", forming a pit for low 

energy particles. This defines the polar cap in geomagnetically quiet 

conditions. 

B. 

5. A quiet-time ring seems to be the prevailing agent for reducing rigidities 

by 70%, while the null cutoffs in the polar cap suggest a merging of geomag- 

netic field lines with the interplanetary field, o r  a particle-energy coupling 

by diffusion processes in the geomagnetosphere. 

The progressive patterns of PCA may be used as a test for presently postu- 

lated models of the magnetic merging. Transient times required fop the 

first and second stages are  usually on the order of hours, and this supports 

a diffusion process that transfers solar particles in interplanetary space 

into the polar cap atmosphere. 

6. 
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Figure 8. (a) Open Polar Cap model proposed by Dungey-Levy. (b) Long tail 

model proposed by Dessler. 

Figure 9. Onset of the PCA Event on July 7, 1958 expressed by contour map of 

A f  min (in 0.1 Mc/s). 
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Figure 4; Lowest latitudes g3 of radio absorption for 22 PCA events observed during 

magnetically quiet periods. Latitudes are expressed in the corrected geomagnetic system. 
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calm period, obtained on the analysis of the PCA boundary and direct observations by 
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Figure 8. (a) Open Polar Cap Model Proposed by Dungey-Levy 
(b) Long Tail Model Proposed by Dessler 



9 

(a )  1st STAGE OF PCA 
02:OO (f  f 1.5 hrs.) 

(b) 1st TO 2nd STAGE 
03:OO (f + 2.5 hrs.) 

(c) START OF 2nd STAGE 
04:OO (f + 3.5 hrs) 

(d) 2nd STAGE 
05:00(f + 4.5 hrs.) 

0 

Figure 9. Onset of the PCA Event on July 7, 1958 Expressed by Contour Map 
of Af min (in 0.1 M d s )  

B - Complete Blackout - At min < 0.5 Mc/s 
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Figure 9. Onset of the PCA Event on July 7, 1958 Expressed by Contour Map 
of At min (in 0.1 Mc/s) (continued) 
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